41 research outputs found

    In-Situ Aberration Metrology Using Phase Wheel Targets

    Get PDF
    Aberration metrology and monitoring of lithography projection systems in the semiconductor industry are becoming more important as today’s ICs are printed at sub-100 nm resolution. All lenses suffer from lens aberrations and it is important that the lithographer knows which aberration and the magnitude of the aberration in order to understand its impact on the process window and resolution limitations. A technique and process to recognize and measure lens aberrations in-situ has been developed using a phase wheel target at 157nm and 193nm lithography. This project will use the phase wheel target technique to extend aberration monitoring into i-line lithography using RIT’s Canon exposure tool. Test reticle design, layout and fabrication, as well as the exposure process optimization will be carried out for the technique to work at 365nm. First order aberrations from the Canon exposure tool will be identified using this system

    A Deep Sequencing Approach to Comparatively Analyze the Transcriptome of Lifecycle Stages of the Filarial Worm, Brugia malayi

    Get PDF
    Lymphatic filariasis, also known as elephantiasis, is a tropical disease affecting over 120 million people worldwide. More than 40 million people live with painful, disfiguring symptoms that can cause severe debilitation and social stigma. The disease is caused by infection with thread-like filarial nematodes (roundworms) that have a complex parasitic lifecycle involving both human and mosquito hosts. In the study, the authors profiled the transcriptome (the set of genes transcribed into messenger RNA rather than all of those in the genome) of the human filarial worm Brugia malayi in different lifecyle stages using deep sequencing technology. The analysis revealed major transitions in RNA expression from eggs through larval stages to adults. Using statistical approaches, the authors identified groups of genes with distinct life stage dependent transcriptional patterns, with particular emphasis on genes displaying sex-biased or germline-enriched patterns and those displaying significant changes during larval development. This study presents a first comprehensive analysis of the lifecycle transcriptome of B. malayi, providing fundamental molecular information that should help researchers better understand parasite biology and could provide clues for the development of more effective interventions

    Patient acceptance of universal screening for hepatitis C virus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the United States, about 70% of 2.9-3.7 million people with hepatitis C (HCV) are unaware of their infection. Although universal screening might be a cost-effective way to identify infections, prevent morbidity, and reduce transmission, few efforts have been made to determine patient opinions about new approaches to screening.</p> <p>Methods</p> <p>We surveyed 200 patients in August 2010 at five outpatient clinics of a major public urban medical center in Seattle, WA, with an 85.8% response rate.</p> <p>Results</p> <p>The sample was 55.3% women, median 47 years of age, and 56.3% white and 32.7% African or African-American; 9.5% and 2.5% reported testing positive for HCV and HIV, respectively. The vast majority of patients supported universal screening for HCV. When presented with three options for screening, 48% preferred universal testing without being informed that they were being tested or provided with negative results, 37% preferred testing with the chance to "opt-out" of being tested and without being provided with negative results, and 15% preferred testing based on clinician judgment. Results were similar for HIV screening.</p> <p>Conclusions</p> <p>Patients support universal screening for HCV, even if that screening involves testing without prior consent or the routine provision of negative test results. Current screening guidelines and procedures should be reconsidered in light of patient priorities.</p

    The genome sequence of <i>Trypanosoma brucei gambiense</i>, causative agent of chronic Human African Trypanosomiasis

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; &lt;i&gt;Trypanosoma brucei gambiense&lt;/i&gt; is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a &lt;i&gt;T. b. brucei&lt;/i&gt; isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between &lt;i&gt;T. b. gambiense&lt;/i&gt; and the reference genome. We sought to identify features that were uniquely associated with &lt;i&gt;T. b. gambiense&lt;/i&gt; and its ability to infect humans.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods and findings:&lt;/b&gt; An improved high-quality draft genome sequence for the group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with &lt;i&gt;T. b. brucei&lt;/i&gt; showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972. A comparison of the variant surface glycoproteins (VSG) in &lt;i&gt;T. b. brucei&lt;/i&gt; with all &lt;i&gt;T. b. gambiense&lt;/i&gt; sequence reads showed that the essential structural repertoire of VSG domains is conserved across &lt;i&gt;T. brucei&lt;/i&gt;.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; This study provides the first estimate of intraspecific genomic variation within &lt;i&gt;T. brucei&lt;/i&gt;, and so has important consequences for future population genomics studies. We have shown that the &lt;i&gt;T. b. gambiense&lt;/i&gt; genome corresponds closely with the reference, which should therefore be an effective scaffold for any &lt;i&gt;T. brucei&lt;/i&gt; genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in &lt;i&gt;T. b. brucei&lt;/i&gt;, no &lt;i&gt;T. b. gambiense&lt;/i&gt;-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans.&lt;/p&gt

    Genetics and geography of leukocyte telomere length in sub-Saharan Africans

    Get PDF
    Leukocyte telomere length (LTL) might be causal in cardiovascular disease and major cancers. To elucidate the roles of genetics and geography in LTL variability across humans, we compared LTL measured in 1295 sub-Saharan Africans (SSAs) with 559 African-Americans (AAms) and 2464 European-Americans (EAms). LTL differed significantly across SSAs (P = 0.003), with the San from Botswana (with the oldest genomic ancestry) having the longest LTL and populations from Ethiopia having the shortest LTL. SSAs had significantly longer LTL than AAms [P = 6.5(e-16)] whose LTL was significantly longer than EAms [P = 2.5(e-7)]. Genetic variation in SSAs explained 52% of LTL variance versus 27% in AAms and 34% in EAms. Adjustment for genetic variation removed the LTL differences among SSAs. LTL genetic variation among SSAs, with the longest LTL in the San, supports the hypothesis that longer LTL was ancestral in humans. Identifying factors driving LTL variation in Africa may have important ramifications for LTL-associated diseases

    Detecting autozygosity through runs of homozygosity: A comparison of three autozygosity detection algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central aim for studying runs of homozygosity (ROHs) in genome-wide SNP data is to detect the effects of autozygosity (stretches of the two homologous chromosomes within the same individual that are identical by descent) on phenotypes. However, it is unknown which current ROH detection program, and which set of parameters within a given program, is optimal for differentiating ROHs that are truly autozygous from ROHs that are homozygous at the marker level but vary at unmeasured variants between the markers.</p> <p>Method</p> <p>We simulated 120 Mb of sequence data in order to know the true state of autozygosity. We then extracted common variants from this sequence to mimic the properties of SNP platforms and performed ROH analyses using three popular ROH detection programs, PLINK, GERMLINE, and BEAGLE. We varied detection thresholds for each program (e.g., prior probabilities, lengths of ROHs) to understand their effects on detecting known autozygosity.</p> <p>Results</p> <p>Within the optimal thresholds for each program, PLINK outperformed GERMLINE and BEAGLE in detecting autozygosity from distant common ancestors. PLINK's sliding window algorithm worked best when using SNP data pruned for linkage disequilibrium (LD).</p> <p>Conclusion</p> <p>Our results provide both general and specific recommendations for maximizing autozygosity detection in genome-wide SNP data, and should apply equally well to research on whole-genome autozygosity burden or to research on whether specific autozygous regions are predictive using association mapping methods.</p

    TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism.

    Get PDF
    DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.This work was supported by funding from the Medical Research Council and the European Research Council (ERC, 281847) (A.P.J.), the Lister Institute for Preventative Medicine (A.P.J. and G.S.S.), Medical Research Scotland (L.S.B.), German Federal Ministry of Education and Research (BMBF, 01GM1404) and E-RARE network EuroMicro (B.W), Wellcome Trust (M. Hurles), CMMC (P.N.), Cancer Research UK (C17183/A13030) (G.S.S. and M.R.H), Swiss National Science Foundation (P2ZHP3_158709) (O.M.), AIRC (12710) and ERC/EU FP7 (CIG_303806) (S.S.), Cancer Research UK (C6/A11224) and ERC/EU FP7 (HEALTH-F2- 2010-259893) (A.N.B. and S.P.J.).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ng.345

    A Systematically Improved High Quality Genome and Transcriptome of the Human Blood Fluke Schistosoma mansoni

    Get PDF
    Schistosomiasis is one of the most prevalent parasitic diseases, affecting millions of people in developing countries. Amongst the human-infective species, Schistosoma mansoni is also the most commonly used in the laboratory and here we present the systematic improvement of its draft genome. We used Sanger capillary and deep-coverage Illumina sequencing from clonal worms to upgrade the highly fragmented draft 380 Mb genome to one with only 885 scaffolds and more than 81% of the bases organised into chromosomes. We have also used transcriptome sequencing (RNA-seq) from four time points in the parasite's life cycle to refine gene predictions and profile their expression. More than 45% of predicted genes have been extensively modified and the total number has been reduced from 11,807 to 10,852. Using the new version of the genome, we identified trans-splicing events occurring in at least 11% of genes and identified clear cases where it is used to resolve polycistronic transcripts. We have produced a high-resolution map of temporal changes in expression for 9,535 genes, covering an unprecedented dynamic range for this organism. All of these data have been consolidated into a searchable format within the GeneDB (www.genedb.org) and SchistoDB (www.schistodb.net) databases. With further transcriptional profiling and genome sequencing increasingly accessible, the upgraded genome will form a fundamental dataset to underpin further advances in schistosome research
    corecore